


 Growth of social media 
 Overview of social media monitoring for public 

health 
 Formation of partnership 
 Study design and obstacles 
 Results 
 Future work 

 



 Common 
› 1 in 6 Americans sickened  
› 3,000 deaths annually 

 Costly 
› $15.6 billion annually per USDA 2014 

 Preventable 
 



 Image credit: Search Engine Journal 

Amount of Internet Users on Social Media Over Time 



 Listens to Twitter and flags restaurants 
 

 Examples of “sick” tweets picked up: 
› Still throwing up I can't go to work stupid food poisoning I hate it 
› I have THE WORST stomach ache right now 
› I'm gonna throw up 
› WOW NOW I HAVE DIARRHEA WHAT THE HECK MAN 
› My stomach is ... up fam! What in the ... did I eat? 

 



 Advanced Language Model 
 Statistical Word Trigram Model 

› “So sick” vs “So sick of homework” 
› “Under the weather” 



 1. Tweet from a restaurant 
› (If you didn’t turn geolocation services off, 

then….) 
 2. Match tweet to restaurant using Google Place 
 3. Follow user for 2 weeks 
 4. Link any subsequent “sick” tweets to restaurant 
 5. Score restaurants based on number of sick tweets 
 6. List of “sick” restaurants flagged by software 

presented to health department 



 What if a user posts from multiple restaurants 
before their sick tweet? 
› Sick tweet snaps back to all of them 
› Other users will help identify which one is the culprit 



 





 
 Does the software guide inspectors toward 

facilities with uncontrolled risk factors? 
 

 Goal: Intervene more quickly to prevent sickness 



 Checked nEmesis daily 
 Selected facilities to follow up on 
 Identified matched controls based on district and 

permit type 
 Dispatched blind inspectors 
 Conducted routine inspections 
 Collected results 

 



 On a typical day: 
› 16,000 geo-tagged tweets 
› 3,600 users 
› 1,000 tweets from 600 users snap to a restaurant 



 Study conducted from  
          Jan 2, 2015 - Mar 31, 2015 
 Inspected 72 flagged facilities and 72 control 
 Flagged facilities earned more demerits than 

control facilities: 9 vs. 6 
› P-value of 0.019 

 Flagged facilities 64% more likely to earn a C-
downgrade than control 



 Most of the control 
results are in the A range 
0-10 demerits. 



 Adaptive 
inspections for 
flagged 
restaurants 
stretch all the 
way to 40 
demerits and 
account for the 
majority of 
downgrades. 



 Fewer FBI investigations performed during the study 
period  
› Study period: 5 
› Same time year prior: 11 
› Average over last 7 years: 7.3 

 
› *Unable to determine statistical significance 

 Inspection at flagged facility identified foodhandler 
working while ill 

 Unpermitted special processes 
 nEmesis identified possible unpermitted food 

establishments unknown to SNHD 
 

Time Period Illness Investigations 

Study period 5 

Same period the year before 11 

Average over 7 years 7.3 



 



 



 
 Unable to detect tweets in other languages 
 Unable to detect evidence of illness posted to 

platforms other than Twitter 
 



 
 CDC EHS-Net Cooperative Agreement 
 Upgraded software 
 Full launch 



 Effective in flagging appropriate facilities 
 Social media monitoring could be a useful tool 

for inspectors to conduct adaptive inspections 
 



 Presented at 
the 2016 AAAI 

Conference 
 

 Presented at 
the 2016 

NEHA 
Conference 
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